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AI-ENABLED EDGE DEVICES

We explore the potential for enabling 
decentralized learning and knowledge 
sharing among AI-Enabled Edge 
Devices (AEEDs). 

An AEED is an agent device situated at 
the network edge, directly interfacing 
with data streams from various sensors. 

It may also control actuators to interact 
with its environment. 

Beyond standard computational 
capabilities, these devices feature an 
AI Core capable of conducting both 
inference and model training directly on 
the device.
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RESEARCH QUESTIONS

Knowledge Exchange: What are the most efficient methods to implement seamless 

knowledge sharing between AI-enabled edge devices to enable machine learning algorithms 

while maintaining data privacy?

We aim to avoid sharing raw training data between nodes to minimize network load and 

enhance data privacy

Spatiotemporal Locality and Non-IID Data: What strategies most effectively incorporate 

localized and non-IID data to improve accuracy in distributed machine learning models?

Evaluating the uncertainty at the level of both the individual agent and the aggregated 

model is essential
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THE GOALS OF THIS REPORT

Investigate the algorithms and methods for deploying distributed machine learning within 
the framework of autonomous, network-capable, sensor-equipped, AI-enabled edge 
devices. 

Within the framework of this study specifically, we focus on determining confidence levels in 
learning outcomes, considering the spatial and temporal variability of data sets encountered 
by independent agents.

To achieve this, we address the following tasks:

Decouple the Distributed Neural Network Optimization (DiNNO) algorithm 
implementation into independent processes, enabling asynchronous network 
communication for distributed learning

Integrate distributed uncertainty estimation into the resulting models by applying 
Bayesian neural networks (BNN)

Implement and evaluate the proposed approaches within a case: simulation of robots 
navigating a 3D environment using the Webots platform, augmented with advanced 
LiDAR sensors for environmental mapping 
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FEDERATED AND DECENTRALIZED 
(P2P) LEARNING

Federated Learning
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ALTERNATING DIRECTION METHOD 
OF MULTIPLIERS (ADMM)

ADMM is an algorithm that solves convex 

optimization problems by breaking them 

into smaller pieces, each of which are 

then easier to handle.

We take the Distributed Neural Network 

Optimization (DiNNO) algorithm as a 

basis for our research
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UNCERTAINTY ESTIMATION IN NN

In a conventional neural network architecture, a linear neuron is characterized by a weight 

(𝑤), a bias (𝑏), and an activation function (𝑓𝑎𝑐𝑡). Given an input 𝑥, a single linear neuron 

performs the following operation: 
𝑦 = 𝑓𝑎𝑐𝑡 (𝑤 ⋅ 𝑥 + 𝑏)

Bayesian Neural Networks (BNNs) employ a Bayesian approach to train stochastic neural networks

Instead of deterministic weights and biases, they utilize probability distributions, denoted 𝑃(𝑤) for 

weights and 𝑃(𝑏) for biases. 

Typically, these distributions are approximated as Gaussian, with mean and standard deviation derived 

from the training data. So, the operation of a Bayesian Linear neuron can be described as: 

𝑃(𝑦|𝑥) = 𝑓𝑎𝑐𝑡 ෍𝑃(𝑤) × 𝑥 + 𝑃(𝑏)

For inference, BNNs might conduct multiple forward passes. The standard deviation of the inference 

values distribution indicate the model's uncertainty for each point in the input data space.
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COLLABORATIVE MAPPING CASE
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We test our approach based on collaborative mapping 

task. This task involves deploying a network of 

independent, robotic edge devices (robots) at various 

starting points. 

Each device is tasked with building a coherent map of 

the environment, utilizing installed LiDAR, and 

exchanging knowledge about the environment with 

other devices.

These devices are designed to update a local ML 

model with newly acquired data samples and 

implement inter-device communication via a network 

interface

The CubiCasa5K data set was used as a reference for 

the floor plans generation



DECENTRALIZED STATE 
EXCHANGE ALGORITHM

Algorithm 1. Peers State Exchange
Require: MaxRound, Socket, Id, State
Initialize: Round, PeerComplete[ ], PeerState[ ]
Message ← (State, 0)
SEND(Socket, Message, Id)
while Round < MaxRound do

(Message, PeerId) ← RECEIVE(Socket)
if Message is RoundComplete then

PeerComplete[PeerId] ← TRUE

else
if Round < Message.Round then

FINISHROUND

end if
PeerState[PeerId] ← Message.State

end if
if ∀s ∈ PeerState, s ≠ Ø then

State ← NODEUPDATE(State, PeerState)
∀s ∈ PeerState, s ← Ø
PeerCompleted[Id] ← TRUE

PeerState[Id] ← State
Message ← RoundComplete
SEND (Socket, Message, Id)

end if
if ∀p ∈ PeerComplete, p = TRUE then

FINISHROUND

end if
end while
function FINISHROUND

∀p ∈ PeerComplete, p ← FALSE

Round ← Round + 1
Message.State ← State
Message.Round ← Round
SEND (Socket, Message, Id)

end function 10

Original DiNNO implementation is a centralized learning 
framework that relies on sequential learning processes based on 
shared agents’ memory. 

We have introduced an epoch-based algorithm to support the 
decentralized peer-to-peer exchange of NN parameters among 
agents. Generally, the following steps are implemented:

1. Edge NN training using local data set

2. P2P exchange of NN parameters

3. Regularization of local NN parameters based on the 
parameters, received from the peers

This version of the algorithm operates under the assumption that 
each message sent will eventually be received by its intended 
recipient. 

In that conditions, all the peers would eventually reach the 
NodeUpdate state and proceed to the next round of 
communication



IMPLEMENTATION OF BNN MODEL

To address uncertainty estimation in the distributed mapping problem, 
we implement BNN model, introducing Bayesian Linear Layers in the NN 
architecture.

The architecture of the BNN is detailed as follows

Input Layer (2): x, y – an input coordinate representing the global 
position on the environment map. 

SIRENLayer (256): a layer with a sinusoidal activation function 
suitable for Neural Implicit Mapping.

4 x Bayesian Linear Layers (256): four Bayesian Linear layers with 
256 nodes each, activated by the ReLU function. These layers are 
probabilistic and support uncertainty estimation.

Output Layer (1): a linear layer with one node activated by the 
Sigmoid function.

This approach introduces probabilistic inference to the model, allowing 
for estimating uncertainty in the network's predictions. 
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BNN PARAMETERS 
REGULARIZATION

To ensure correct regularization of the BNN parameters during the 
distributed learning regularization phase, Algorithm 2 has been 
developed to consider the semantics of median (µ) and standard 
deviation (𝜌) parameters of BNN neurons. 

We utilize Kullback-Leibler Divergence (KL Divergence) for the 
regularization of BNN 𝜌-parameters between the models of 
individual actors.

KL Divergence is employed to account for the difference between 
the Gaussian distributions that represent the parameters of the 
BNN. KL Divergence serves as a measure to quantify the 
dissimilarity between two probability distributions and can be 
generally computed as:

𝐷𝐾𝐿 𝑔 ∥ ℎ = න𝑔 𝑥 log
𝑔(𝑥)

ℎ(𝑥)
d𝑥

Within the BNNs, applying KL Divergence helps quantify the 
deviation of the neural network's parameter distribution from a 
specified prior distribution
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SIMULATION ENVIRONMENT 
IMPLEMENTATION
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Based on floor plans sourced from the CubiCasa5K 

dataset, we generated 3D interior models in STL 

format for robotic exploration

To simulate the behavior of autonomous agents, these 

3D interior models were imported into the Webots

simulation platform where we deployed models of 

TurtleBot robots for navigation within these 

environments

This methodology enabled us to use advanced LiDAR 

sensor models, incorporating realistic noise and 

measurement uncertainties into our experiments

In this study, it is assumed that all robots can access 

global positioning information. Movement paths for the 

agents were pre-determined, enabling the generation 

of simulation programs for their traversal through the 

interiors



EXPERIMENT SETUP

The experiment involves launching seven independent agents 

that gradually collect information from LiDAR sensors while 

exploring a virtual interior space

Each agent runs as a separate Python process 

Agent communication is handled through direct TCP connections 

among the processes within the same virtual local network

The ZeroMQ framework is used for asynchronous data exchange

Containerization of agent processes is achieved using Singularity 

containers equipped with GPU access 

In the experiments outlined, we initiate all processes on GPU-

enabled computing nodes managed by the SLURM workload 

manager
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SINGLE-AGENT UNCERTAINTY 
ESTIMATION
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To generate outputs from the Bayesian neural network, 50 queries were made for each pair of input 

coordinates (x,y). Subsequently, a visualization was created to illustrate the mean values and standard 

deviations of the neural network responses. 

The 𝑘𝑙𝑤𝑒𝑖𝑔ℎ𝑡 learning hyperparameter should be correctly “fine-tuned” if we want to distinguish the 

"hallucinations" of the neural network from areas with sufficient data



MULTI-AGENT BNN TRAINING
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We evaluated the impact of different regularization approaches on the training quality of Bayesian 
neural networks within the decentralized environment

We observe that applying Kullback–Leibler divergence for parameter regularization leads to a 12-30% 
decrease in the validation loss of the distributed BNN training compared to other regularization 
strategies

(a) Mean (b) Standard Deviation



CONCLUSIONS

We addressed a problem of uncertainty estimation within distributed machine learning based 

on AI-enabled edge devices:

We set up a simulation of a collaborative mapping problem using the Webots platform; 

introduced an epoch-based algorithm to support the decentralized peer-to-peer exchange 

of NN parameters among agents; 

and integrated distributed uncertainty estimation into our models by applying Bayesian 

neural networks.

BNNs can effectively support uncertainty estimation in a distributed learning context.

Applying Kullback–Leibler divergence for parameter regularization resulted in a 12-30% 

reduction in validation loss during the training of distributed BNNs compared to other 

regularization strategies. 
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FUTURE WORK

We are currently exploring how distributed learning with BNNs can be tailored for embedded 

AI hardware. 

This would involve refining the NN architecture to suit the resource constraints of AI-enabled 

edge devices (such as Nvidia Jetson).

We plan to compare the efficiently of distributed and decentralized NN training using 

Federated Learning, ADMM-based and Federated Distillation approaches, in cases of 

centralized and decentralized environments

We also explore task management and offloading strategies within the multi-layered fog and 

hybrid edge-fog-cloud environments to improve computational efficiency and resource 

utilization
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