
UNCERTAINTY ESTIMATION

IN MULTI-AGENT DISTRIBUTED LEARNING

FOR AI-ENABLED EDGE DEVICES

Gleb Radchenko, Victoria Fill

Silicon Austria Labs

01

02

03

04

05

Research Goals

Federated and Decentralized Learning

Uncertainty Estimation in ML

Test Case Outline and Proposed Solution

Results Evaluation and Future Work

AI-ENABLED EDGE DEVICES

We explore the potential for enabling
decentralized learning and knowledge
sharing among AI-Enabled Edge
Devices (AEEDs).

An AEED is an agent device situated at
the network edge, directly interfacing
with data streams from various sensors.

It may also control actuators to interact
with its environment.

Beyond standard computational
capabilities, these devices feature an
AI Core capable of conducting both
inference and model training directly on
the device.

3

Sensors

Actuators

Network

interface

Real-time

core

General

purpose

core

Sensors array

data stream

Action

signals stream

Edge Training

Cycle

AI

core

Knowledge exchange

Model actualization

AI-enabled Edge device

Global Training

Cycle

Models

Samples

Edge/Fog/Cloud

RESEARCH QUESTIONS

Knowledge Exchange: What are the most efficient methods to implement seamless

knowledge sharing between AI-enabled edge devices to enable machine learning algorithms

while maintaining data privacy?

We aim to avoid sharing raw training data between nodes to minimize network load and

enhance data privacy

Spatiotemporal Locality and Non-IID Data: What strategies most effectively incorporate

localized and non-IID data to improve accuracy in distributed machine learning models?

Evaluating the uncertainty at the level of both the individual agent and the aggregated

model is essential

4

THE GOALS OF THIS REPORT

Investigate the algorithms and methods for deploying distributed machine learning within
the framework of autonomous, network-capable, sensor-equipped, AI-enabled edge
devices.

Within the framework of this study specifically, we focus on determining confidence levels in
learning outcomes, considering the spatial and temporal variability of data sets encountered
by independent agents.

To achieve this, we address the following tasks:

Decouple the Distributed Neural Network Optimization (DiNNO) algorithm
implementation into independent processes, enabling asynchronous network
communication for distributed learning

Integrate distributed uncertainty estimation into the resulting models by applying
Bayesian neural networks (BNN)

Implement and evaluate the proposed approaches within a case: simulation of robots
navigating a 3D environment using the Webots platform, augmented with advanced
LiDAR sensors for environmental mapping

5

FEDERATED AND DECENTRALIZED
(P2P) LEARNING

Federated Learning

6

Decentralized (P2P) Learning

Edge

Node

Sensor

4 Global Model

parameters deployment
2 Aggregation of parameters

from edge models

1 On-site model

training

Raw data

Global Training Node

3 Global Model Optimization

1 On-site model training

2 Parameters exchange

3 On-site parameters

regularization

ALTERNATING DIRECTION METHOD
OF MULTIPLIERS (ADMM)

ADMM is an algorithm that solves convex

optimization problems by breaking them

into smaller pieces, each of which are

then easier to handle.

We take the Distributed Neural Network

Optimization (DiNNO) algorithm as a

basis for our research

7

J. Yu, J. A. Vincent and M. Schwager, "DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning," in IEEE Robotics and Automation Letters, vol.

7, no. 2, pp. 1896-1903, April 2022, doi: 10.1109/LRA.2022.3142402.

UNCERTAINTY ESTIMATION IN NN

In a conventional neural network architecture, a linear neuron is characterized by a weight

(𝑤), a bias (𝑏), and an activation function (𝑓𝑎𝑐𝑡). Given an input 𝑥, a single linear neuron

performs the following operation:
𝑦 = 𝑓𝑎𝑐𝑡 (𝑤 ⋅ 𝑥 + 𝑏)

Bayesian Neural Networks (BNNs) employ a Bayesian approach to train stochastic neural networks

Instead of deterministic weights and biases, they utilize probability distributions, denoted 𝑃(𝑤) for

weights and 𝑃(𝑏) for biases.

Typically, these distributions are approximated as Gaussian, with mean and standard deviation derived

from the training data. So, the operation of a Bayesian Linear neuron can be described as:

𝑃(𝑦|𝑥) = 𝑓𝑎𝑐𝑡 ෍𝑃(𝑤) × 𝑥 + 𝑃(𝑏)

For inference, BNNs might conduct multiple forward passes. The standard deviation of the inference

values distribution indicate the model's uncertainty for each point in the input data space.

8

COLLABORATIVE MAPPING CASE

9

We test our approach based on collaborative mapping

task. This task involves deploying a network of

independent, robotic edge devices (robots) at various

starting points.

Each device is tasked with building a coherent map of

the environment, utilizing installed LiDAR, and

exchanging knowledge about the environment with

other devices.

These devices are designed to update a local ML

model with newly acquired data samples and

implement inter-device communication via a network

interface

The CubiCasa5K data set was used as a reference for

the floor plans generation

DECENTRALIZED STATE
EXCHANGE ALGORITHM

Algorithm 1. Peers State Exchange
Require: MaxRound, Socket, Id, State
Initialize: Round, PeerComplete[], PeerState[]
Message ← (State, 0)
SEND(Socket, Message, Id)
while Round < MaxRound do

(Message, PeerId) ← RECEIVE(Socket)
if Message is RoundComplete then

PeerComplete[PeerId] ← TRUE

else
if Round < Message.Round then

FINISHROUND

end if
PeerState[PeerId] ← Message.State

end if
if ∀s ∈ PeerState, s ≠ Ø then

State ← NODEUPDATE(State, PeerState)
∀s ∈ PeerState, s ← Ø
PeerCompleted[Id] ← TRUE

PeerState[Id] ← State
Message ← RoundComplete
SEND (Socket, Message, Id)

end if
if ∀p ∈ PeerComplete, p = TRUE then

FINISHROUND

end if
end while
function FINISHROUND

∀p ∈ PeerComplete, p ← FALSE

Round ← Round + 1
Message.State ← State
Message.Round ← Round
SEND (Socket, Message, Id)

end function 10

Original DiNNO implementation is a centralized learning
framework that relies on sequential learning processes based on
shared agents’ memory.

We have introduced an epoch-based algorithm to support the
decentralized peer-to-peer exchange of NN parameters among
agents. Generally, the following steps are implemented:

1. Edge NN training using local data set

2. P2P exchange of NN parameters

3. Regularization of local NN parameters based on the
parameters, received from the peers

This version of the algorithm operates under the assumption that
each message sent will eventually be received by its intended
recipient.

In that conditions, all the peers would eventually reach the
NodeUpdate state and proceed to the next round of
communication

IMPLEMENTATION OF BNN MODEL

To address uncertainty estimation in the distributed mapping problem,
we implement BNN model, introducing Bayesian Linear Layers in the NN
architecture.

The architecture of the BNN is detailed as follows

Input Layer (2): x, y – an input coordinate representing the global
position on the environment map.

SIRENLayer (256): a layer with a sinusoidal activation function
suitable for Neural Implicit Mapping.

4 x Bayesian Linear Layers (256): four Bayesian Linear layers with
256 nodes each, activated by the ReLU function. These layers are
probabilistic and support uncertainty estimation.

Output Layer (1): a linear layer with one node activated by the
Sigmoid function.

This approach introduces probabilistic inference to the model, allowing
for estimating uncertainty in the network's predictions.

11

BNN PARAMETERS
REGULARIZATION

To ensure correct regularization of the BNN parameters during the
distributed learning regularization phase, Algorithm 2 has been
developed to consider the semantics of median (µ) and standard
deviation (𝜌) parameters of BNN neurons.

We utilize Kullback-Leibler Divergence (KL Divergence) for the
regularization of BNN 𝜌-parameters between the models of
individual actors.

KL Divergence is employed to account for the difference between
the Gaussian distributions that represent the parameters of the
BNN. KL Divergence serves as a measure to quantify the
dissimilarity between two probability distributions and can be
generally computed as:

𝐷𝐾𝐿 𝑔 ∥ ℎ = න𝑔 𝑥 log
𝑔(𝑥)

ℎ(𝑥)
d𝑥

Within the BNNs, applying KL Divergence helps quantify the
deviation of the neural network's parameter distribution from a
specified prior distribution

12

SIMULATION ENVIRONMENT
IMPLEMENTATION

13

Based on floor plans sourced from the CubiCasa5K

dataset, we generated 3D interior models in STL

format for robotic exploration

To simulate the behavior of autonomous agents, these

3D interior models were imported into the Webots

simulation platform where we deployed models of

TurtleBot robots for navigation within these

environments

This methodology enabled us to use advanced LiDAR

sensor models, incorporating realistic noise and

measurement uncertainties into our experiments

In this study, it is assumed that all robots can access

global positioning information. Movement paths for the

agents were pre-determined, enabling the generation

of simulation programs for their traversal through the

interiors

EXPERIMENT SETUP

The experiment involves launching seven independent agents

that gradually collect information from LiDAR sensors while

exploring a virtual interior space

Each agent runs as a separate Python process

Agent communication is handled through direct TCP connections

among the processes within the same virtual local network

The ZeroMQ framework is used for asynchronous data exchange

Containerization of agent processes is achieved using Singularity

containers equipped with GPU access

In the experiments outlined, we initiate all processes on GPU-

enabled computing nodes managed by the SLURM workload

manager

14

SINGLE-AGENT UNCERTAINTY
ESTIMATION

15

To generate outputs from the Bayesian neural network, 50 queries were made for each pair of input

coordinates (x,y). Subsequently, a visualization was created to illustrate the mean values and standard

deviations of the neural network responses.

The 𝑘𝑙𝑤𝑒𝑖𝑔ℎ𝑡 learning hyperparameter should be correctly “fine-tuned” if we want to distinguish the

"hallucinations" of the neural network from areas with sufficient data

MULTI-AGENT BNN TRAINING

16

We evaluated the impact of different regularization approaches on the training quality of Bayesian
neural networks within the decentralized environment

We observe that applying Kullback–Leibler divergence for parameter regularization leads to a 12-30%
decrease in the validation loss of the distributed BNN training compared to other regularization
strategies

(a) Mean (b) Standard Deviation

CONCLUSIONS

We addressed a problem of uncertainty estimation within distributed machine learning based

on AI-enabled edge devices:

We set up a simulation of a collaborative mapping problem using the Webots platform;

introduced an epoch-based algorithm to support the decentralized peer-to-peer exchange

of NN parameters among agents;

and integrated distributed uncertainty estimation into our models by applying Bayesian

neural networks.

BNNs can effectively support uncertainty estimation in a distributed learning context.

Applying Kullback–Leibler divergence for parameter regularization resulted in a 12-30%

reduction in validation loss during the training of distributed BNNs compared to other

regularization strategies.

17

FUTURE WORK

We are currently exploring how distributed learning with BNNs can be tailored for embedded

AI hardware.

This would involve refining the NN architecture to suit the resource constraints of AI-enabled

edge devices (such as Nvidia Jetson).

We plan to compare the efficiently of distributed and decentralized NN training using

Federated Learning, ADMM-based and Federated Distillation approaches, in cases of

centralized and decentralized environments

We also explore task management and offloading strategies within the multi-layered fog and

hybrid edge-fog-cloud environments to improve computational efficiency and resource

utilization

18

THANK YOU!

GLEB.RADCHENKO@SILICON-AUSTRIA.COM

19

The research reported has been partly funded by the European Union’s Horizon 2020 research and
innovation program within the framework of Chips Joint Undertaking (Grant No. 101112268). This work
has been supported by Silicon Austria Labs (SAL), owned by the Republic of Austria, the Styrian Business
Promotion Agency (SFG), the federal state of Carinthia, the Upper Austrian Research (UAR), and the
Austrian Association for the Electric and Electronics Industry (FEEI)

mailto:Gleb.Radchenko@silicon-Austria.com

	Slide 1: Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices
	Slide 2
	Slide 3: AI-Enabled edge devices
	Slide 4: Research questions
	Slide 5: The goals of this report
	Slide 6: Federated and Decentralized (p2p) learning
	Slide 7: alternating direction method of multipliers (ADMM)
	Slide 8: Uncertainty estimation in NN
	Slide 9: Collaborative mapping case
	Slide 10: decentralized state exchange algorithm
	Slide 11: Implementation of BNN Model
	Slide 12: BNN parameters regularization
	Slide 13: Simulation environment Implementation
	Slide 14: Experiment setup
	Slide 15: Single-Agent Uncertainty Estimation
	Slide 16: Multi-agent bnn training
	Slide 17: Conclusions
	Slide 18: Future work
	Slide 19: Thank you!

